import pandas as pd import numpy as np import category_encoders as ce from collections import Counter import scipy.stats as ss from copy import deepcopy # https://github.com/ashishjain1547/PublicDatasets/blob/master/sales%20orders%20products%20promos%20custs%20emps%20(202112)/sales_data_sample.csv df_sales = pd.read_csv('sales orders products promos custs emps (202112)/sales_data_sample.csv') df_sales.head() df_sales[['ADDRESSLINE1', 'CONTACTFIRSTNAME', 'PHONE', 'CITY', 'POSTALCODE']].head() df_sales.corr() df_sales_2 = df_sales[list(set(df_sales.columns) - set(df_sales.corr().columns))] df_sales_2.head() from category_encoders.ordinal import OrdinalEncoder oe = OrdinalEncoder(drop_invariant=False, return_df=True) df_sales_3 = df_sales_2[list(set(df_sales.columns) - set(df_sales.corr().columns))] df_sales_3.head() df_sales_3.columns oe_var = oe.fit(df_sales_3) df_coe = oe_var.transform(df_sales_3) df_coe Counter(df_sales_3['PRODUCTLINE'].values).most_common() df_coe.corr() df_coe.corr().loc[['ADDRESSLINE1', 'CONTACTFIRSTNAME', 'PHONE', 'CITY', 'POSTALCODE'], ['ADDRESSLINE1', 'CONTACTFIRSTNAME', 'PHONE', 'CITY', 'POSTALCODE']] df_coe.corr(method='spearman').loc[['ADDRESSLINE1', 'CONTACTFIRSTNAME', 'PHONE', 'CITY', 'POSTALCODE'], ['ADDRESSLINE1', 'CONTACTFIRSTNAME', 'PHONE', 'CITY', 'POSTALCODE']] Counter(df_sales_3['PRODUCTLINE'].values).most_common() def cramers_v_original(confusion_matrix): """ calculate Cramers V statistic for categorial-categorial association. uses correction from Bergsma and Wicher, Journal of the Korean Statistical Society 42 (2013): 323-328 """ chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum() phi2 = chi2 / n r, k = confusion_matrix.shape phi2corr = max(0, phi2 - ((k-1)*(r-1))/(n-1)) rcorr = r - ((r-1)**2)/(n-1) kcorr = k - ((k-1)**2)/(n-1) return np.sqrt(phi2corr / min((kcorr-1), (rcorr-1))) categorical_cols = ['ADDRESSLINE1', 'CONTACTFIRSTNAME', 'PHONE', 'CITY', 'POSTALCODE'] out_dict = {} for i in categorical_cols: out_dict[i] = [] for j in categorical_cols: confusion_matrix = pd.crosstab(df_coe[j], df_coe[i]).values #print('{:<25} {}'.format(i, round(cramers_v_original(confusion_matrix), 4))) out_dict[i].append(round(cramers_v_original(confusion_matrix), 4)) df_rtn = pd.DataFrame(out_dict) df_rtn.index = categorical_cols df_rtn categorical_cols = ['ADDRESSLINE1', 'CONTACTFIRSTNAME', 'PHONE', 'CITY', 'POSTALCODE'] out_dict = {} for i in categorical_cols: out_dict[i] = [] for j in categorical_cols: confusion_matrix = pd.crosstab(df_sales_3[j], df_sales_3[i]).values out_dict[i].append(round(cramers_v_original(confusion_matrix), 4)) df_rtn = pd.DataFrame(out_dict) df_rtn.index = categorical_cols df_rtn df_fe = deepcopy(df_sales_3) def get_freq(in_): return pl_dict[in_] for i2 in categorical_cols: pl_mc = Counter(df_sales_3[i2].values).most_common() pl_dict = {} for i,j in enumerate(pl_mc): pl_dict[j[0]] = i df_fe[i2] = df_fe[i2].apply(get_freq) df_fe = df_fe[categorical_cols] from scipy.stats import chi2_contingency chi2_dict = {} for i in categorical_cols: chi2_dict[i] = [] for j in categorical_cols: obs = np.array([df_coe[i], df_coe[j]]) chi2_dict[i].append((round(chi2_contingency(obs)[0], 4), round(chi2_contingency(obs)[1], 4))) # chi2, p, dof, ex chi2_df = pd.DataFrame(chi2_dict) chi2_df.index = categorical_cols chi2_dict_2 = {} for i in categorical_cols: chi2_dict_2[i] = [] for j in categorical_cols: obs = np.array([df_coe[i], df_coe[j]]) chi2_dict_2[i].append((round(chi2_contingency(obs)[0], 6))) # chi2, p, dof, ex chi2_dict_2 = pd.DataFrame(chi2_dict_2) chi2_dict_2.index = categorical_cols from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0,1)) scaler.fit(chi2_dict_2) chi2_dict_2_scaled = scaler.transform(chi2_dict_2) chi2_df_scaled = pd.DataFrame(data = (1 - chi2_dict_2_scaled), index = categorical_cols, columns = categorical_cols)
Thursday, December 2, 2021
Categorical encoding, correlation (numerical and cat), and chi-sq contingency Using Python
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment