1. View all environments. (base) C:\Users\aj>conda env list # conda environments: # base * D:\programfiles\Anaconda3 bert_aas D:\programfiles\Anaconda3\envs\bert_aas e20200909 D:\programfiles\Anaconda3\envs\e20200909 ... tf D:\programfiles\Anaconda3\envs\tf 2. View all Jupyter Kernels. (base) C:\Users\aj>jupyter kernelspec list Available kernels: temp C:\Users\aj\AppData\Roaming\jupyter\kernels\temp tf C:\Users\aj\AppData\Roaming\jupyter\kernels\tf python3 D:\programfiles\Anaconda3\share\jupyter\kernels\python3 py38 C:\ProgramData\jupyter\kernels\py38 (base) C:\Users\aj> ========== 3. A note about updating a package in Conda (from debugging instructions). (base) C:\Users\aj>conda update ipykernel jupyter -c conda-forge Updating ipykernel is constricted by anaconda -> requires ipykernel==5.1.4=py37h39e3cac_0 If you are sure you want an update of your package either try `conda update --all` or install a specific version of the package you want using `conda install [pkg]=[version]` done ==> WARNING: A newer version of conda exists. current version: 4.8.4 latest version: 4.8.5 Please update conda by running $ conda update -n base -c defaults conda In this command, by '-n base' we mean 'base' is the name of the environment. By '-c defaults', we mean download 'conda' from the 'defaults' channel. Note: Following are three commonly used channels for downloading Python packages: 1. pkgs/main 2. defaults 3. conda-forge ========== 4. Installing a new Jupyter kernel. (e20200909) CMD>python -m ipykernel install --user --name e20200909 Installed kernelspec e20200909 in C:\Users\aj\AppData\Roaming\jupyter\kernels\e20200909 ========== 5. Checking installation Differentiating between 'pip' and 'conda' installation. (e20200909) D:\ws\jupyter>pip freeze | findstr /C:"jupyter" /C:"jupyterlab" jupyter-client @ file:///tmp/build/80754af9/jupyter_client_1594826976318/work jupyter-console @ file:///home/conda/feedstock_root/build_artifacts/jupyter_console_1598728807792/work jupyter-core==4.6.3 jupyterlab==2.2.8 jupyterlab-pygments @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab_pygments_1601375948261/work jupyterlab-server @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab_server_1593951277307/work (e20200909) C:\Users\aj>pip freeze | findstr /C:"transformers" /C:"tensorflow" /C:"torch" torch @ file:///C:/ci/pytorch_1596373105144/work transformers==3.0.1 Important Note: In the above two outputs, where we see a "@ file" based path in place of package version, that package has been installed via 'conda'. (e20200909) C:\Users\aj>python -c "import torch; print(torch.__version__);" 1.6.0 View only Conda installations (e20200909) CMD>pip freeze | findstr /C:"file" argon2-cffi @ file:///D:/bld/argon2-cffi_1596630042503/work attrs @ file:///home/conda/feedstock_root/build_artifacts/attrs_1599308529326/work bleach @ file:///home/conda/feedstock_root/build_artifacts/bleach_1600454382015/work cffi @ file:///C:/ci/cffi_1598352710791/work ... View only Pip installations (e20200909) CMD>pip freeze | findstr /v /C:"file" async-generator==1.10 backcall==0.2.0 bert-serving-client==1.10.0 bert-serving-server==1.10.0 certifi==2020.6.20 chardet==3.0.4 click==7.1.2 ... (e20200909) CMD>pip list Package Version ------------------- ------------------- argon2-cffi 20.1.0 async-generator 1.10 attrs 20.2.0 backcall 0.2.0 bert-serving-client 1.10.0 bert-serving-server 1.10.0 bleach 3.2.1 certifi 2020.6.20 cffi 1.14.2 chardet 3.0.4 click 7.1.2 ... ========== 6. Conda has more clarity about getting a good match between versions of already installed packages and the new packages that are to be installed: (e20200909) C:\Users\Ashish Jain>conda install tensorflow -c conda-forge Collecting package metadata (repodata.json): done Solving environment: failed with initial frozen solve. Retrying with flexible solve. Solving environment: - Found conflicts! Looking for incompatible packages. This can take several minutes. Press CTRL-C to abort. Examining python=3.8: 50%|███████████████ | 1/2 [00:03<00:03, 3.41s/it]-failed UnsatisfiableError: The following specifications were found to be incompatible with the existing python installation in your environment: Specifications: - tensorflow -> python[version='3.5.*|3.6.*|>=3.5,<3.6.0a0|>=3.6,<3.7.0a0|>=3.7,<3.8.0a0|3.7.*'] Your python: python=3.8 If python is on the left-most side of the chain, that's the version you've asked for. When python appears to the right, that indicates that the thing on the left is somehow not available for the python version you are constrained to. Note that conda will not change your python version to a different minor version unless you explicitly specify that. ========== 7. Getting all the available versions of a package in PyPI: (base) CMD>pip install tensorflow== ERROR: Could not find a version that satisfies the requirement tensorflow== (from versions: 1.13.0rc1, 1.13.0rc2, 1.13.1, 1.13.2, 1.14.0rc0, 1.14.0rc1, 1.14.0, 1.15.0rc0, 1.15.0rc1, 1.15.0rc2, 1.15.0rc3, 1.15.0, 1.15.2, 1.15.3, 1.15.4, 2.0.0a0, 2.0.0b0, 2.0.0b1, 2.0.0rc0, 2.0.0rc1, 2.0.0rc2, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.1.0rc0, 2.1.0rc1, 2.1.0rc2, 2.1.0, 2.1.1, 2.1.2, 2.2.0rc0, 2.2.0rc1, 2.2.0rc2, 2.2.0rc3, 2.2.0rc4, 2.2.0, 2.2.1, 2.3.0rc0, 2.3.0rc1, 2.3.0rc2, 2.3.0, 2.3.1) ERROR: No matching distribution found for tensorflow== If Conda does not have a package in one of the mentioned channels such as 'conda-forge' or 'defaults', it raises the below exception: ResolvePackageNotFound: - tensorflow=1.15.4 ========== 8. Checking TensorFlow 1.X installation: (bert_env) CMD>conda list tensorflow # packages in environment at E:\programfiles\Anaconda3\envs\bert_env: # # Name Version Build Channel tensorflow 1.14.0 h1f41ff6_0 conda-forge tensorflow-base 1.14.0 py37hc8dfbb8_0 conda-forge tensorflow-estimator 1.14.0 py37h5ca1d4c_0 conda-forge (bert_env) CMD>python >>> import tensorflow as tf >>> print(tf.__version__) 2.3.0 >>> ~ ~ ~ ~ ~ (bert_env) CMD>pip freeze | find "tensorflow" tensorflow==2.3.0 tensorflow-estimator==2.3.0 (bert_env) CMD>pip freeze | findstr "tensorflow" tensorflow==2.3.0 tensorflow-estimator==2.3.0 (bert_env) CMD>python -c "import tensorflow as tf; print(tf.__version__)" 2.3.0 (bert_env) CMD>pip show tensorflow Name: tensorflow Version: 2.3.0 Summary: TensorFlow is an open source machine learning framework for everyone. Home-page: https://www.tensorflow.org/ Author: Google Inc. Author-email: packages@tensorflow.org License: Apache 2.0 Location: c:\users\aj\appdata\roaming\python\python37\site-packages Requires: wheel, astunparse, numpy, protobuf, wrapt, gast, six, tensorflow-estimator, scipy, grpcio, termcolor, tensorboard, opt-einsum, absl-py, keras-preprocessing, h5py, google-pasta Required-by: ==========
Wednesday, October 14, 2020
Compare pip and conda installations
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment