Wednesday, July 20, 2022

Lemmatization using NLTK's WordNetLemmatizer


import nltk
from nltk.stem.wordnet import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()
    
print("rocks :", lemmatizer.lemmatize("rocks"))
print("corpora :", lemmatizer.lemmatize("corpora"))
    
# a denotes adjective in "pos"
print("better :", lemmatizer.lemmatize("better", pos ="a"))

print("went :", lemmatizer.lemmatize("went", pos ="v"))

print("easier :", lemmatizer.lemmatize("easier", pos ="a"))
print("cheaper :", lemmatizer.lemmatize("cheaper", pos ="a"))
print("best :", lemmatizer.lemmatize("best", pos ="a"))
print("drilling :", lemmatizer.lemmatize("drilling", pos ="v"))
print("hammering :", lemmatizer.lemmatize("hammering", pos ="v"))


Notes and Output

""" print("went :", lemmatizer.lemmatize("went", pos = nltk.stem.wordnet.VERB)) AttributeError: module 'nltk.stem.wordnet' has no attribute 'VERB' """ """ There is also a BiText Lemmatizer. (base) $ python lemma.py rocks : rock corpora : corpus better : good went : go easier : easy cheaper : cheap best : best drilling : drill hammering : hammer
Tags: Natural Language Processing,Python

No comments:

Post a Comment