We have some data that looks like this in a file "names.csv": names,text Harry Potter,Harry Potter is the protagonist. Ronald Weasley,Ronald Weasley is the chess expert. Hermione Granger,Hermione is the super witch. Hermione Granger,Hermione Granger weds Ron. We augment this data by replacing the names in the "text" column with new randomly selected different names. For this we write Python code as given below: import pandas as pd from collections import OrderedDict import numpy as np import names from snorkel.augmentation import transformation_function from snorkel.preprocess.nlp import SpacyPreprocessor spacy = SpacyPreprocessor(text_field="text", doc_field="doc", memoize=True) df = pd.read_csv('names.csv', encoding='cp1252') print(df.head()) print() # Pregenerate some random person names to replace existing ones with for the transformation strategies below replacement_names = [names.get_full_name() for _ in range(50)] # Replace a random named entity with a different entity of the same type. @transformation_function(pre=[spacy]) def change_person(x): person_names = [ent.text for ent in x.doc.ents if ent.label_ == "PERSON"] # If there is at least one person name, replace a random one. Else return None. if person_names: name_to_replace = np.random.choice(person_names) replacement_name = np.random.choice(replacement_names) x.text = x.text.replace(name_to_replace, replacement_name) return x tfs = [ change_person ] from snorkel.augmentation import RandomPolicy random_policy = RandomPolicy( len(tfs), sequence_length=2, n_per_original=1, keep_original=True ) from snorkel.augmentation import PandasTFApplier tf_applier = PandasTFApplier(tfs, random_policy) df_train_augmented = tf_applier.apply(df) print(f"Original training set size: {len(df)}") print(f"Augmented training set size: {len(df_train_augmented)}") print(df_train_augmented) print("\nDebugging for 'Hermione':\n") import spacy nlp = spacy.load('en_core_web_sm') def format_str(str, max_len = 25): str = str + " " * max_len return str[:max_len] for i, row in df.iterrows(): doc = nlp(row.text) for ent in doc.ents: # print(ent.text, ent.start_char, ent.end_char, ent.label_) print(format_str(ent.text), ent.label_) The Snorkel we are running is: (temp) E:\>conda list snorkel # packages in environment at E:\programfiles\Anaconda3\envs\temp: # # Name Version Build Channel snorkel 0.9.3 py_0 conda-forge Now, we run it in "Anaconda Prompt": (temp) E:\>python script.py names text 0 Harry Potter Harry Potter is the protagonist. 1 Ronald Weasley Ronald Weasley is the chess expert. 2 Hermione Granger Hermione is the super witch. 3 Hermione Granger Hermione Granger weds Ron. 100%|██████████| 4/4 [00:00<00:00, 34.58it/s] Original training set size: 4 Augmented training set size: 7 names text 0 Harry Potter Harry Potter is the protagonist. 0 Harry Potter Donald Gregoire is the protagonist. 1 Ronald Weasley Ronald Weasley is the chess expert. 1 Ronald Weasley John Hill is the chess expert. 2 Hermione Granger Hermione is the super witch. 3 Hermione Granger Hermione Granger weds Ron. 3 Hermione Granger Jonathan Humphrey weds Ron. Debugging for 'Hermione': Harry Potter PERSON Ronald Weasley PERSON Hermione ORG Hermione Granger PERSON Ron PERSON There is an error with the name "Hermione" (the red row above). Upon debugging we see that it is recognized as an 'Organization' and not a 'Person'.
Friday, August 21, 2020
Using Snorkel, SpaCy to augment text data
Labels:
Technology
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment