Cell Value Replacement Through Assignment in Pandas
import pandas as pd df = pd.DataFrame({ 'col1': ["alpha", "beta", "gamma"], 'col2': ['beta', 'gamma', 'alpha'], 'col3': ['gamma', 'alpha', 'beta'] }) df[df == 'alpha'] = 'delta' dfError in PySpark For The Same Code: Unhashable type: 'DataFrame'
from pyspark import pandas as ppd df_ppd = ppd.DataFrame({ 'col1': ["alpha", "beta", "gamma"], 'col2': ['beta', 'gamma', 'alpha'], 'col3': ['gamma', 'alpha', 'beta'] }) df_ppd[df_ppd == 'alpha'] = 'delta' --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In [13], line 1 ----> 1 df_ppd[df_ppd == 'alpha'] = 'delta' File ~/anaconda3/envs/mh/lib/python3.9/site-packages/pyspark/pandas/frame.py:12355, in DataFrame.__setitem__(self, key, value) 12352 psdf = self._assign({k: value[c] for k, c in zip(key, field_names)}) 12353 else: 12354 # Same Series. > 12355 psdf = self._assign({key: value}) 12357 self._update_internal_frame(psdf._internal) TypeError: unhashable type: 'DataFrame'Alternate Way
df_ppd = df_ppd.replace(to_replace = ['alpha'], value = "delta") df_ppd = df_ppd.replace(to_replace = ['beta', 'gamma'], value = "epsilon") Also Check: Way 4: With respect to DataFrame.replace() Method (Ways in which Pandas API on PySpark differs from Plain Pandas)
Tuesday, November 1, 2022
Way 5: WRT Cell Value Replacement Through Assignment (Ways in which Pandas API on PySpark differs from Plain Pandas)
Download Code
Labels:
Spark,
Technology
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment