Step 1: Create an environment.
(base) C:\windows\system32>conda create -n tensorflow python=3.5
#-----#-----#-----#-----#-----#-----#-----#-----#-----#-----#
Step 2: Testing the latest version of TensorFlow.
(base) C:\windows\system32>conda activate tensorflow
(tensorflow) C:\windows\system32>pip install tensorflow
Successfully installed absl-py-0.6.0 astor-0.7.1 gast-0.2.0 grpcio-1.16.0 h5py-2.8.0 keras-applications-1.0.6 keras-preprocessing-1.0.5 markdown-3.0.1 numpy-1.15.3 protobuf-3.6.1 setuptools-39.1.0 six-1.11.0 tensorboard-1.11.0 tensorflow-1.11.0 termcolor-1.1.0 werkzeug-0.14.1
(tensorflow) C:\windows\system32>python
Python 3.5.6 |Anaconda, Inc.| (default, Aug 26 2018, 16:05:27) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
Traceback (most recent call last):
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in [module]
from tensorflow.python.pywrap_tensorflow_internal import *
...
ImportError: DLL load failed: A dynamic link library (DLL) initialization routine failed.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "[stdin]", line 1, in [module]
...
ImportError: DLL load failed: A dynamic link library (DLL) initialization routine failed.
Failed to load the native TensorFlow runtime.
See https://www.tensorflow.org/install/install_sources#common_installation_problems
for some common reasons and solutions. Include the entire stack trace
above this error message when asking for help.
>>>
# Uninstall the older version.
(tensorflow) C:\windows\system32>pip uninstall tensorflow
Successfully uninstalled tensorflow-1.11.0
#-----#-----#-----#-----#-----#-----#-----#-----#-----#-----#
Step 3: Installing an older, compatible version of TensorFlow.
(tensorflow) C:\windows\system32>pip install tensorflow==1.5
(tensorflow) C:\windows\system32>python
Python 3.5.6 |Anaconda, Inc.| (default, Aug 26 2018, 16:05:27) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
b'Hello, TensorFlow!'
>>>
#-----#-----#-----#-----#-----#-----#-----#-----#-----#-----#
Step 4: Setting up the kernel for Jupyter Notebook.
(tensorflow) C:\Users\Admin>pip install ipykernel
----- ----- ----- ----- -----
(base) C:\Users\Admin>python -m ipykernel install --name "tensorflow"
Installed kernelspec tensorflow in C:\ProgramData\jupyter\kernels\tensorflow
The python kernel in Jupyter notebook points to the root kernel. If you need a specific environment to be displayed in your Jupyter notebook, do the following:
# Creating a custom environment in anaconda prompt with python 3.6
(base)C:\>conda create -n MyEnvironment python=3.6
(base)C:\>activate MyEnvironment
# Install your custom pacakges like tensorflow etc
(MyEnvironment)C:\>pip install tensorflow
(MyEnvironment)C:\>python -m ipykernel install --name MyEnvironment
(MyEnvironment)C:\>jupyter notebook
Now you should be able to see both root kernal and MyEnvironment kernel version in Jupyter notebook (Navigation bar -> Kernel -> Change kernel -> My Environment).
Ref: https://stackoverflow.com/questions/51687757/tensorflow-is-not-working-in-jupyter-notebook
Related article: Setting Up TensorFlow Using Archives: http://survival8.blogspot.com/p/setting-up-tensorflow-using-archives.html
Pages
- Index of Lessons in Technology
- Index of Book Summaries
- Index of Book Lists And Downloads
- Index For Job Interviews Preparation
- Index of "Algorithms: Design and Analysis"
- Python Course (Index)
- Data Analytics Course (Index)
- Index of Machine Learning
- Postings Index
- Index of BITS WILP Exam Papers and Content
- Lessons in Investing
- Index of Math Lessons
- Downloads
- Index of Management Lessons
- Book Requests
- Index of English Lessons
- Index of Medicines
- Index of Quizzes (Educational)
Installing TensorFlow and setting up the kernel for Jupyter Notebook
Subscribe to:
Comments (Atom)
No comments:
Post a Comment