Step 1: Create an environment. (base) C:\windows\system32>conda create -n tensorflow python=3.5 #-----#-----#-----#-----#-----#-----#-----#-----#-----#-----# Step 2: Testing the latest version of TensorFlow. (base) C:\windows\system32>conda activate tensorflow (tensorflow) C:\windows\system32>pip install tensorflow Successfully installed absl-py-0.6.0 astor-0.7.1 gast-0.2.0 grpcio-1.16.0 h5py-2.8.0 keras-applications-1.0.6 keras-preprocessing-1.0.5 markdown-3.0.1 numpy-1.15.3 protobuf-3.6.1 setuptools-39.1.0 six-1.11.0 tensorboard-1.11.0 tensorflow-1.11.0 termcolor-1.1.0 werkzeug-0.14.1 (tensorflow) C:\windows\system32>python Python 3.5.6 |Anaconda, Inc.| (default, Aug 26 2018, 16:05:27) [MSC v.1900 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow Traceback (most recent call last): File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in [module] from tensorflow.python.pywrap_tensorflow_internal import * ... ImportError: DLL load failed: A dynamic link library (DLL) initialization routine failed. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "[stdin]", line 1, in [module] ... ImportError: DLL load failed: A dynamic link library (DLL) initialization routine failed. Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/install_sources#common_installation_problems for some common reasons and solutions. Include the entire stack trace above this error message when asking for help. >>> # Uninstall the older version. (tensorflow) C:\windows\system32>pip uninstall tensorflow Successfully uninstalled tensorflow-1.11.0 #-----#-----#-----#-----#-----#-----#-----#-----#-----#-----# Step 3: Installing an older, compatible version of TensorFlow. (tensorflow) C:\windows\system32>pip install tensorflow==1.5 (tensorflow) C:\windows\system32>python Python 3.5.6 |Anaconda, Inc.| (default, Aug 26 2018, 16:05:27) [MSC v.1900 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow as tf >>> hello = tf.constant('Hello, TensorFlow!') >>> sess = tf.Session() >>> print(sess.run(hello)) b'Hello, TensorFlow!' >>> #-----#-----#-----#-----#-----#-----#-----#-----#-----#-----# Step 4: Setting up the kernel for Jupyter Notebook. (tensorflow) C:\Users\Admin>pip install ipykernel ----- ----- ----- ----- ----- (base) C:\Users\Admin>python -m ipykernel install --name "tensorflow" Installed kernelspec tensorflow in C:\ProgramData\jupyter\kernels\tensorflow The python kernel in Jupyter notebook points to the root kernel. If you need a specific environment to be displayed in your Jupyter notebook, do the following: # Creating a custom environment in anaconda prompt with python 3.6 (base)C:\>conda create -n MyEnvironment python=3.6 (base)C:\>activate MyEnvironment # Install your custom pacakges like tensorflow etc (MyEnvironment)C:\>pip install tensorflow (MyEnvironment)C:\>python -m ipykernel install --name MyEnvironment (MyEnvironment)C:\>jupyter notebook Now you should be able to see both root kernal and MyEnvironment kernel version in Jupyter notebook (Navigation bar -> Kernel -> Change kernel -> My Environment). Ref: https://stackoverflow.com/questions/51687757/tensorflow-is-not-working-in-jupyter-notebook Related article: Setting Up TensorFlow Using Archives: http://survival8.blogspot.com/p/setting-up-tensorflow-using-archives.html
Installing TensorFlow and setting up the kernel for Jupyter Notebook
Subscribe to:
Posts (Atom)
No comments:
Post a Comment