# import pandas.rpy.common as com
# # load the R package ISLR
# infert = com.importr("ISLR")
# # load the Auto dataset
# auto_df = com.load_data('Auto')
import pandas as pd
import seaborn as sns
%matplotlib inline
data = {
"x": range(0, 100),
"y": range(100, 0, -1),
"z": range(0, 100),
"a": [4, 5] * 50,
"b": [4, 5, 6, 7] * 25
}
df = pd.DataFrame(data)
print(df.head())
corr = df.corr()
print(corr)
# plot the heatmap
sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns)
OUTPUT IN JUPYTER NOTEBOOK:
Changing color scheme of heatmap:
Code:
sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns, cmap="YlGnBu")
Output:
Another:
cmap = sns.diverging_palette(5, 250, as_cmap=True)
sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns, cmap = cmap)
Viewing heatmap like color scheme in the Pandas textual output itself:
Code:
cmap = sns.diverging_palette(5, 250, as_cmap=True)
def magnify():
rtnVal = [dict(selector="th",
props=[("font-size", "10px")]),
dict(selector="td",
props=[('padding', "2px 2px")]),
dict(selector="th:hover",
props=[("font-size", "16px")]),
dict(selector="tr:hover td:hover",
props=[('max-width', '200px'),
('font-size', '16px')])]
return []
corr.style.background_gradient(cmap, axis=1)\
.set_properties(**{'max-width': '80px', 'font-size': '14px'})\
.set_caption("Hover to magify")\
.set_precision(2)\
.set_table_styles(magnify())
Output:
Pages
- Index of Lessons in Technology
- Index of Book Summaries
- Index of Book Lists And Downloads
- Index For Job Interviews Preparation
- Index of "Algorithms: Design and Analysis"
- Python Course (Index)
- Data Analytics Course (Index)
- Index of Machine Learning
- Postings Index
- Index of BITS WILP Exam Papers and Content
- Lessons in Investing
- Index of Math Lessons
- Downloads
- Index of Management Lessons
- Book Requests
- Index of English Lessons
- Index of Medicines
- Index of Quizzes (Educational)
Creating Heatmap from Pandas DataFrame correlation matrix
Subscribe to:
Comments (Atom)
No comments:
Post a Comment